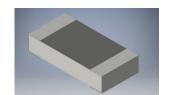
RMEA Series


Automotive Grade Anti-Sulfur Thick Film Chip Resistor RoHS Compliant Without Exemption

Stackpole Electronics, Inc.

Resistive Product Solutions

Features:

- Inner terminations engineered to deter sulfur contamination
- Power derating from 100% at 70°C to zero at +155°C
- AEC-Q200 qualified
- · RoHS compliant and lead free without exemption
- Halogen free
- REACH compliant

		Electrical	Specification	ons			
Type/Code	Power Rating (W) @ 70°C	Max. Working	Max. Overload	TCR	Ohmic R	ange (Ω) and $^{-}$	Гolerance
	Jumper Rated Current	Voltage (V)	Voltage (V)	(ppm/°C)	0.5%	1%	5%
				± 200		1 - 9.76	
	0.063	50	100	± 100		10 - 1M	
RMEA0402				± 200		1.02M - 10M	
	Jumper: 1A			-		-	0 (<50 mΩ)
			150	± 200		1 - 9.76	
RMEA0603	0.1	75		± 100		10 - 1M	
RIVIEAU0U3		75		± 200		1.02M - 10M	
	Jumper: 1A			-		-	0 (<50 mΩ)
		150		± 200		1 - 9.76	
RMEA0805	0.125		300	± 100		10 - 1M	
RIVIEAUOUS			300	± 200		1.02M - 10M	
	Jumper: 2A			-		-	0 (<50 mΩ)
	0.25			± 200		1 - 9.76	
RMEA1206		200	400	± 100		10 - 1M	
NIVILATZOO				± 200		1.02M - 10M	
	Jumper: 2A			-		-	0 (<50 mΩ)
			400	± 200		1 - 9.76	
RMEA1210	0.33	200		± 100		10 - 1M	
NIVILATZIO		200	400	± 200		1.02M - 10M	
	Jumper: 2.5A			-		-	0 (<50 mΩ)
				± 200		1 - 9.76	
RMEA2010	0.75	200	400	± 100		10 - 1M	
NIVILAZUTU		200	400	± 200		1.02M - 10M	
	Jumper: 3.5A			-		-	0 (<50 mΩ)
				± 200		1 - 9.76	
RMEA2512	1	250	500	± 100		10 - 1M	
INVILAZUIZ		250	300	± 200		1.02M - 10M	
	Jumper: 4A			-		<u>-</u>	0 (<50 mΩ)

Operating temperature range is -55°C to +155°C

Operating Voltage = $\sqrt{(P^*R)}$ or Max. Operating Voltage listed above, whichever is lower.

Overload Voltage = $2.5^* \sqrt{(P^*R)}$ or Max. Overload Voltage listed above, whichever is lower.

Resistive Product Solutions

	Electrical Specifications – High Power									
Type/Code	Power Rating (W) @ 70°C	Max. Working	Max. Overload	TCR (ppm/°C)	Ohmic Range (Ω) and Tolerance					
	9	Voltage (V)	Voltage (V)	(ррпі О)	0.5%	1%	5%			
DMEA0400 LID	0.4	50	100	± 200	-	1 - 9	.76			
RMEA0402HP	0.1	50	100	± 100		10 - 1M				
DME ACCOS LID	0.25	75 450		± 200	-	1 - 9	.76			
RMEA0603HP	0.25	75	150	± 100	10 - 1M					
DME ACCOR LID	0.33	150	300	± 200	-	1 - 9	.76			
RMEA0805HP	0.33	150	300	± 100		10 - 1M				
RMEA1206 -HP	0.5	200	400	± 200	-	1 - 9	.76			
RIVIEATZUOTP	0.5	200	400	± 100		10 - 1M				
RMEA1210 -HP	0.75	200	400	± 200	•	1 - 9	.76			
RIVIEATZTUNP	0.75	200	400	± 100		10 - 1M				
RMEA2010 -HP	1	200	400	± 200	-	1 - 9	.76			
NIVIEAZUTUTP	I	200 400		± 100		10 - 1M				
RMEA2512 -HP	1.5	050	500	± 200	1	1 - 9	.76			
NIVIEA2312TP	6.1	250	500	± 100		10 - 1M				

Operating temperature range is -55°C to +155°C.

Operating Voltage = $\sqrt{(P^*R)}$ or Max. Operating Voltage listed above, whichever is lower.

Overload Voltage = $2.5^* \sqrt{(P^*R)}$ or Max. Overload Voltage listed above, whichever is lower.

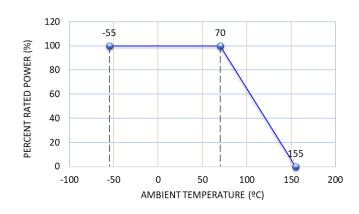
The power rating depends on the maximum temperature of the resistive element. Due to the power dissipation of the resistor, the temperature of the resistive element will rise depending on the condition of heat dissipation from PCB. The maximum power rating in application only applies if the temperature of the resistive element does not exceed 125°C.

Mechanical Specifications L V T1 D2

Type/Code	(1000 pcs)	L	W	Т	D1	D2	Unit
RMEA0402	0.62	0.039 ± 0.002	0.020 ± 0.002	0.014 ± 0.002	0.008 ± 0.004	0.008 ± 0.004	inches
TUILAUTUZ	0.02	1.00 ± 0.05	0.50 ± 0.05	0.35 ± 0.05	0.20 ± 0.10	0.20 ± 0.10	mm
RMEA0603	2.04	0.063 ± 0.004	0.031 ± 0.004	0.018 ± 0.004	0.012 ± 0.008	0.012 ± 0.008	inches
NIVILA0003	2.04	1.60 ± 0.10	0.80 ± 0.10	0.45 ± 0.10	0.30 ± 0.20	0.30 ± 0.20	mm
RMEA0805	4.36	0.079 ± 0.004	0.049 ± 0.004	0.020 ± 0.004	0.014 ± 0.008	0.016 ± 0.008	inches
KIVIEAUOUS		2.00 ± 0.10	1.25 ± 0.10	0.50 ± 0.10	0.35 ± 0.20	0.40 ± 0.20	mm
RMEA1206	8.9	0.122 ± 0.004	0.061 ± 0.004	0.022 ± 0.004	0.020 ± 0.010	0.020 ± 0.008	inches
RIVIERIZUO	6.9	3.10 ± 0.10	1.55 ± 0.10	0.55 ± 0.10	0.50 ± 0.25	0.50 ± 0.20	mm
RMEA1210	15.9	0.122 ± 0.004	0.102 ± 0.006	0.022 ± 0.004	0.020 ± 0.010	0.020 ± 0.008	inches
RIVIERIZIO	15.9	3.10 ± 0.10	2.60 ± 0.15	0.55 ± 0.10	0.50 ± 0.25	0.50 ± 0.20	mm
RMEA2010	24.2	0.197 ± 0.004	0.098 ± 0.006	0.022 ± 0.004	0.024 ± 0.010	0.020 ± 0.008	inches
RIVIEAZUIU	24.2	5.00 ± 0.10	2.50 ± 0.15	0.55 ± 0.10	0.60 ± 0.25	0.50 ± 0.20	mm
RMEA2512	39.4	0.250 ± 0.004	0.122 ± 0.006	0.022 ± 0.004	0.024 ± 0.010	0.020 ± 0.008	inches
KIVIEA2512	39.4	6.35 ± 0.10	3.10 ± 0.15	0.55 ± 0.10	0.60 ± 0.25	0.50 ± 0.20	mm

Automotive Grade Anti-Sulfur Thick Film Chip Resistor RoHS Compliant Without Exemption

Stackpole Electronics, Inc.


Resistive Product Solutions

		Performance Characteristics			
Tool	To at Mathead	Describer.	Re	equirements	
Test	Test Method	Procedure	≤ ± 1%	≤ ± 1% ± 5%	
Temperature Coefficient of Resistance (TCR)	JIS-C-5201-1 4.8 IEC-60115-1 4.8	At 25/-55°C and 25°C/+155°C, 25°C is the reference temperature	As pe	er specification	
Short Time Overload	JIS-C-5201-1 4.13 IEC-60115-1 4.13	 2.5 times RCWV or Max. overload voltage whichever is less for 5 seconds. 	±(1% + 0.05Ω)	±(2% + 0.05Ω)	< 50mΩ
Insulation Resistance	JIS-C-5201-1 4.6 IEC-60115-1 4.6	Max. Overload Voltage for 1 minute		≥ 10GΩ	
Operational Life	MIL-STD-202 Method 108	Condition D steady state TA = 125 °C at derated power. Measurement at 24 ± 4 hours after test conclusion.	±(2% + 0.1Ω)	±(3% + 0.1Ω)	< 100mΩ
Biased Humidity	MIL-STD-202 Method 103	1000 hours 85°C/85% R.H. 10% of operating power	±(2% + 0.1Ω)	±(3% + 0.1Ω)	< 100mΩ
High Temperature Exposure	MIL-STD-202 Method 108	At +155°C for 1000 hours	±(1% + 0.05Ω)	±(1.5% + 0.1Ω)	< 50mΩ
Board Flex	AEC-Q200-005	Bending once for 60 seconds 2010, 2512 sizes: 2mm; other sizes: 3mm	±(1% + 0.05Ω)	±(1% + 0.05Ω)	< 50mΩ
Solderability	JIS-C-5201-1 4.17 IEC-60115-1 4.17 J-STD-002	245 ± 5°C for 3 seconds	> 95% coverage		
Resistance to Soldering Heat	MIL-STD-202 Method 210	260 ± 5°C for 10 seconds	±(0.5% + 0.05Ω)	±(1% + 0.05Ω)	< 50mΩ
Voltage Proof	JIS-C-5201-1 4.7 IEC-60115-1 4.7	1.42 times Max. Operating Voltage for 1 minute	No break	down or flashove	r
Leaching	JIS-C-5201-1 4.18 IEC-60068-2-58 8.2.1	260 ± 5°C for 30 seconds		leaching area ≤ 5 ching area ≤ 10%	
Temperature Cycling	JESD22 Method JA-104	-55°C to + 125°C, 1000 cycles	±(0.5% + 0.05Ω)	±(1.5% + 0.05Ω)	< 50mΩ
Mechanical Shock	MIL-STD-202 Method 213	Wave Form: Tolerance for half sine shock pulse. Peak value is 100g's. Normal duration (D) is 6.	$\pm (0.25\% + 0.05\Omega)$	±(1% + 0.05Ω)	< 50mΩ
Vibration	MIL-STD-202 Method 204	5 g's for 20 minutes, 12 cycles each of 3 orientations, 10-2000Hz	±(0.5% + 0.05Ω)	±(1% + 0.05Ω)	< 50mΩ
ESD	AEC-Q200-002	Human body model 0402/0603: 0.5KV; 0805 and above: 2KV	±(3	3% + 0.05Ω)	
Resistance to Solvents	MIL-STD-202 Method 215	Add aqueous wash chemical - OKEM Clean or equivalent. Do not use banned solvents.	No visible dam	age on appearand	ce and
Terminal Strength	AEC-Q200-006	Force of 1.8Kg for 60 seconds	N	o breakage	
Flammability	UL-94	V-0 or V-1 are acceptable. Electrical test not required		tissue paper or s pinewood board	corching
Sulfur Test	EIA-977 (Condition B)	105 ± 2°C, no power rating for 750 hours	ΔR±		<50mΩ

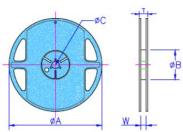
RCWV (Rated Continuous Working Voltage) = $\sqrt{(P^*R)}$ or Max. Operating Voltage whichever is lower. Storage temperature is 15~28 °C; Humidity < 80% R.H.

Shelf life is 2 years from production date.

Power Derating Curve:

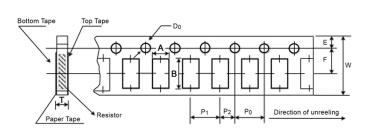
Stackpole Electronics, Inc. Resistive Product Solutions

Recommended Pad Layout


	100 X97.			
Size	A	В	С	Unit
RMEA0402	0.020	0.018	0.024	inches
KIVIEA0402	0.50	0.45	0.60	mm
RMEA0603	0.035	0.024	0.035	inches
RIVIEAU0U3	0.90	0.60	0.90	mm
RMEA0805	0.047	0.028	0.051	inches
RIVIEAUOUS	1.20	0.70	1.30	mm
RMEA1206	0.079	0.035	0.063	inches
RIVIEATZUO	2.00	0.90	1.60	mm
RMEA1210	0.079	0.035	0.110	inches
RIVIEATZTO	2.00	0.90	2.80	mm
RMEA2010	0.150	0.035	0.110	inches
RIVIEAZUTU	3.80	0.90	2.80	mm
RMEA2512	0.193	0.063	0.138	inches
KIVIEA2512	4.90	1.60	3.50	mm

Recommended Solder Profile (°C) 260 T_c-5°C Max. Ramp Up Rate = 3°C/s Max. Ramp Down Rate = 6°C/s Max 30s 217 T_L Temperature → 60~150s Preheat Area 200 150 — t_s -Time (sec.) -25 Time 25°C to Peak

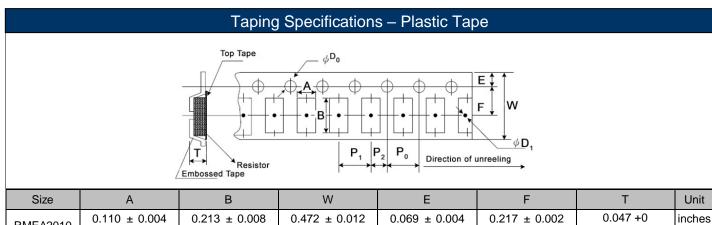
Reflow	Profiles
Profile Feature	Pb-Free Assembly
Preheat	
Min. Temperature (Tsmin)	150°C
Max. Temperature (Tsmax)	200°C
Preheating time (ts) from Tsmin to Tsmax)	60-120 seconds
Ramp-up rate (T _L to Tp)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t_L) maintained above T_L	60-150 seconds
Min. Peak Temperature	235°C
Max. Peak Temperature (Tp max)	260°C
Time (tp) within 5°C of the specified classification temperature (Tc)	30 seconds max.
Ramp-down rate (Tp to T _L)	6°C/second max.
Time 25°C to Peak Temperature	8 minutes max.


Resistive Product Solutions

Packaging Specifications

Туре	Tape Width	Reel Ø	ØA	ØB	ØС	W	Т	Unit
RMEA0402	8 mm				0.512 ± 0.008 13.00 ± 0.20	0.354 ± 0.020 9.00 ± 0.50	0.492 ± 0.020 12.50 ± 0.50	inches mm
RMEA0603 RMEA0805 RMEA1206 RMEA1210	8 mm	7 inches		2.362 +0.039/-0 60.00 +1 /-0	0.512 ± 0.008 13.00 ± 0.20	0.354 ± 0.020 9.00 ± 0.50	0.492 ± 0.020 12.50 ± 0.50	
RMEA2010 RMEA2512	12 mm				0.512 ± 0.020 13.00 ± 0.50	0.512 ± 0.020 13.00 ± 0.50	0.610 ± 0.020 15.50 ± 0.50	inches mm

Taping Specifications - Paper Tape



Size	Α	В	W	Е	F	Unit
RMEA0402	0.026 ± 0.004	0.045 ± 0.004				inches
11112710102	0.65 ± 0.10	1.15 ± 0.10				mm
RMEA0603	0.043 ± 0.004	0.075 ± 0.004				inches
TOVILAGOUS	1.10 ± 0.10	1.90 ± 0.10				mm
RMEA0805	0.063 ± 0.004	0.094 ± 0.008	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches
KIVILAU003	1.60 ± 0.10	2.40 ± 0.20	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm
RMEA1206	0.075 ± 0.004	0.138 ± 0.008				inches
KWLATZOO	1.90 ± 0.10	3.50 ± 0.20				mm
RMEA1210	0.114 ± 0.004	0.138 ± 0.008				inches
RIVIEATZTO	2.90 ± 0.10	3.50 ± 0.20				mm
Size	P0	P1	P2	ØD	Т	Unit
RMEA0402		0.079 ± 0.002			0.018 ± 0.004	inches
KIVIEAU4U2		2.00 ± 0.05			0.45 ± 0.10	mm
RMEA0603					0.028 ± 0.004	inches
RIVIEAU0U3					0.70 ± 0.10	mm
RMEA0805	0.157 ± 0.004	0.157 ± 0.002	0.079 ± 0.002	0.059 +0.004/-0	0.033 ± 0.004	inches
RIVILAGGG	4.00 ± 0.10	4.00 ± 0.05	2.00 ± 0.05	1.50 +0.10/-0	0.85 ± 0.10	mm
RMEA1206					0.033 ± 0.004	inches
RIVILATZOO					0.85 ± 0.10	mm
RMEA1210					0.033 ± 0.004	inches

Resistive Product Solutions

 mm

inches mm

Size	A	В	W	E	F	7	Т
RMEA2010	0.110 ± 0.004	0.213 ± 0.008	0.472 ± 0.012	0.069 ± 0.004	0.217 ± 0.002	0.04	7 +0
KWLAZUTO	2.80 ± 0.10	5.40 ± 0.20	12.00 ± 0.30	1.75 ± 0.10	5.50 ± 0.05	1.2	2 +0
RMEA2512	0.138 ± 0.004	0.264 ± 0.004	0.472 ± 0.012	0.069 ± 0.004	0.217 ± 0.002	0.04	7 +0
KIVILAZJIZ	3.50 ± 0.10	6.70 ± 0.10	12.00 ± 0.30	1.75 ± 0.10	5.50 ± 0.05	1.2	2 +0
Size	P0	P1	P2	ØD0	ØD1	Unit	
RMEA2010	0.157 ± 0.004	0.157 ± 0.004	0.079 ± 0.002	0.059 +0.004/-0	0.059 +0.01/-0	inches	
KIVIEAZUTU	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.05	1.50 +0.10/-0	1.50 +0.25/-0	mm	
RMEA2512	0.157 ± 0.004	0.157 ± 0.004	0.079 ± 0.002	0.059 +0.004/-0	0.059 +0.01/-0	inches	
IXIVILAZOTZ	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.05	1.50 +0.10/-0	1.50 +0.25/-0	mm	

Resistive Product Solutions

Part Marking Instructions

1% Marking

The nominal resistance is marked on the surface of the overcoating with the use of 4 digit markings.

0201 and 0402 are not marked.

5% Marking

The nominal resistance is marked on the surface of the overcoating with the use of 3 digit markings.

0201 and 0402 are not marked.

For shared E24/E96 values, 1% tolerance product may be marked with three-digit marking instead of the standard four-digit marking for all other E96 values. All E24 values available in 1% tolerance are also marked with three-digit marking.

Marking Instructions for 0603 1% Chip Resistors (per EIA-J)

A two-digit number is assigned to each standard R-Value (E96) as shown in the chart below. This is followed by one alpha character which is used as a multiplier. Each letter represents a specific multiplier as follows:

Z = 0.01	A = 10	D = 10,000
Y = 0.1	B = 100	E = 100,000
X = 1	C = 1,000	F = 1,000,000

EXAMPLE:

Chip Marking	Explanation	Value
01B	01 means 10.0 and B = 100	10.0 x 100 = 1 Kohm
25C	25 means 17.8 and C = 1,000	17.8 x 1,000 = 17.8 Kohm
93D	93 means 90.9 and D = 10,000	90.9 x 10,000 = 909 Kohm

					E	96					
#	R-Value										
01	10.0	17	14.7	33	21.5	49	31.6	65	46.4	81	68.1
02	10.2	18	15.0	34	22.1	50	32.4	66	47.5	82	69.8
03	10.5	19	15.4	35	22.6	51	33.2	67	48.7	83	71.5
04	10.7	20	15.8	36	23.2	52	34.0	68	49.9	84	73.2
05	11.0	21	16.2	37	23.7	53	34.8	69	51.1	85	75.0
06	11.3	22	16.5	38	24.3	54	35.7	70	52.3	86	76.8
07	11.5	23	16.9	39	24.9	55	36.5	71	53.6	87	78.7
08	11.8	24	17.4	40	25.5	56	37.4	72	54.9	88	80.6
09	12.1	25	17.8	41	26.1	57	38.3	73	56.2	89	82.5
10	12.4	26	18.2	42	26.7	58	39.2	74	57.6	90	84.5
11	12.7	27	18.7	43	27.4	59	40.2	75	59.0	91	86.6
12	13.0	28	19.1	44	28.0	60	41.2	76	60.4	92	88.7
13	13.3	29	19.6	45	28.7	61	42.2	77	61.9	93	90.9
14	13.7	30	20.0	46	29.4	62	43.2	78	63.4	94	93.1
15	14.0	31	20.5	47	30.1	63	44.2	79	64.9	95	95.3
16	14.3	32	21.0	48	30.9	64	45.3	80	66.5	96	97.6

RMEA Series

Automotive Grade Anti-Sulfur Thick Film Chip Resistor RoHS Compliant Without Exemption

Stackpole Electronics, Inc.

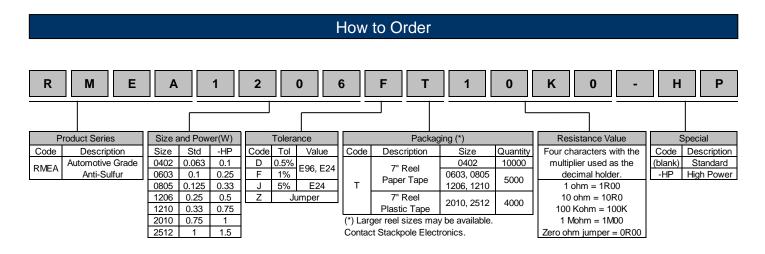
Resistive Product Solutions

RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

RoHS Compliance Status						
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)
RMEA	Automotive Grade Anti-Sulfur Chip Resistor	SMD	YES	100% Matte Sn over Ni	Always	Always

"Conflict Metals" Commitment


We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

